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Passive Microwave power limiters that use narrow linewidth ferri -

magnetic materials such as YIG and gallium-substituted YIG operating in

the coincidence region have been previously reportedl $2>3. However,

these limiters have been restricted to operating in the L- and S-ba~d

ranges because of the low ferrite saturation magnetization (4TrM ). Re-

cently, monocrystal lithium ferrite having a 4rTM of 3900 and e~hibiting

relatively narrow line-width properties has bec~me available. We have

used this material in the development of a coincidence power limiter that

operates in the 6500-Mc/s frequency range. (Independent work on coinci-

dence limiting using lithium at 5200 Mc /s, has recently been reported by

Ross015.

A photograph of the limiter with an adjustable permanent magnet is

shown in Figure 1. The circuit arrangement consists of the decoupled

Fig. 10. Lithium ferrite limiter Fig. 11>. Limiter with top cover

(with adjustable permanent mag- removed.

net),

1
orthogonal resonator configuration introduced by De Grasse . The lithium

ferrite, which is highly anisotropic (see the measured data in Figure 2),

*Thi5 Work WaS s~ppoi-ted by Collins Radio Company, Dallas , Texas .

+Coincidence limiting is restricted to approximately an octave region,

which for a sphere is given by; 1/3 (4rM~) < 0 /y < 2/3 (4m Ms).
where ~ . angular frequency and

~ . gyromagnetiC ratio
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Fig. 2. Momcrystd lithium ferrite anisotrophy (nwaswed at 6500 Me/s).

yielded limiting threshold levels that varied from -9dbmto Odbm, de-

pending upon the crystal orientation with respect to the external magnetic

field ( ). The higher limiting level was obtained when the HDCwas

%50 r ie nte a ong the [111] (easy) axis. In this orientation, the measured

linewidths arelargest6, being about 50ersteds and 2.5oersteds for AH

and AH ~, respectively.

A t~pical input power vs.output power characteristic is shown in

Figure 3. To date, the operating band over which limiting was obtained

extended from 5000 Me/s to 6800 Me/s. However, low-level limiting
should be obtainable from about 4400 Me/s to 7100 Me/s, as shown by the
P crit (threshold power) vs frequency measurement plotted in Figure 4.

The insertion loss of the device was as low as 1. 1 db with an instan-

taneous bandwidth of 60 Mc /s and a dynamic range in excess of 30 db.

Further decreases in the insertion loss can be obtained with the application

of larger ferrite spheres. (The sphere diameter used in the described

limiter was O. 037 inch. )

The phase-shift characteristics of the device as a function of input

power are shown in Figure 3. It is seen to have phase -distortionless

qualities similar to those of the varactor limiter. This is to be expected

since both types of limiters use similar mechanisms .
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Fig. 3. Typical phase and limiting characteristics of lithiunl ferrite limiter

(measured at 6500 Me/s).
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The response of the limiter to pulsed RF signals exhibited the ex-

pected spike characteristic at the leading edge, which is caused by the

time required to excite the appropriate spin wave from the uniform pre -

cision. The width of the spike was found to be inversely proportional to

the amplitude of the incident pulse, and its height was approximately equal

to the incident pulse amplitude. In addition, the spike energy (area under

the spike ) appeared to be independent of the incident pulse. (This is

similar to the results observed on YIG in reference 3).

A detailed measurement of the decline of the lithium magnetic sus-

ceptibility as a function of input power is shown in Figure 5. It is seen

that the sharp break, which is the predicted characteristic, is replaced by

a gradual de~line. This is believed to be a result of some inhomogenity

broadening. Thus, still narrower linewidth lithium ferrite should be

obtainable, which would yield lower threshold limiters.
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